Optimal Weighted Recombination

نویسنده

  • Dirk V. Arnold
چکیده

Weighted recombination is a means for improving the local search performance of evolution strategies. It aims to make effective use of the information available, without significantly increasing computational costs per time step. In this paper, the potential speed-up resulting from using rank-based weighted recombination is investigated. Optimal weights are computed for the sphere model, and comparisons with the performance of strategies that do not make use of weighted recombination are presented. It is seen that unlike strategies that rely on unweighted recombination and truncation selection, weighted multirecombination evolution strategies are able to improve on the serial efficiency of the (1 + 1)-ES on the sphere. The implications of the use of weighted recombination for noisy optimization are studied, and parallels to the use of rescaled mutations are drawn. The cumulative step length adaptation mechanism is formulated for the case of an optimally weighted evolution strategy, and its performance is analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Weighted Optimal Path in Graph with Multiple Indexes

This paper represents a technique for finding optimal paths with multiple indexes in a graph. Up to the present time, all optimal paths have been determined upon one index, say, distance for which an evaluation method exists. In this paper firstly we define multiple indexes for each edge in such a way that anyone can treat the factor for assigning an optimal path. Here, we use Data Envelopment ...

متن کامل

sigma-Self-Adaptive Weighted Multirecombination Evolution Strategy with Scaled Weights on the Noisy Sphere

This paper presents a performance analysis of the recently proposed σ-self-adaptive weighted recombination evolution strategy (ES) with scaled weights. The steady state behavior of this ES is investigated for the non-noisy and noisy case, and formulas for the optimal choice of the learning parameter are derived allowing the strategy to reach maximal performance. A comparison between weighted mu...

متن کامل

Log-Linear Convergence of the Scale-Invariant (µ/µw, lambda)-ES and Optimal µ for Intermediate Recombination for Large Population Sizes

Evolution Strategies (ESs) are population-based methods well suited for parallelization. In this paper, we study the convergence of the (μ/μw, λ)-ES, an ES with weighted recombination, and derive its optimal convergence rate and optimal μ especially for large population sizes. First, we theoretically prove the log-linear convergence of the algorithm using a scale-invariant adaptation rule for t...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005